Sunday, October 24, 2021

Adders in Verilog

 Adders in Verilog 

Although addition is performed using a different method in an FPGA, the basic adder circuit still remains the same.

Half Adder

The half adder (for one-bit addition) has two inputs and two outputs. It adds input bits and gives sum and carry-out bits as the output. The truth table of the one-bit half adder. Binary variables x and y stand for input bits to be added. Binary variables s and co represent sum and carry-out values.


Truth Table of the Half Adder (for One-Bit Addition)

Circuit diagram of half adder.

Full Adder

The full adder is a digital circuit that performs the addition of three numbers. It is implemented using logic gates. A one-bit full adder adds three one-bit binary numbers (two input bits, mostly A and B, and one carry bit Cin being carried forward from previous addition) and outputs a sum and a carry bit.

A full adder can also be formed by using two half-adders and ORing their final outputs. A half adder adds two binary numbers. Since full adder is a combinational circuit, therefore it can be modelled in Verilog language.

Now, Verilog code for a full adder circuit with the behavioural style of modelling first demands the concept and working of a full adder.

    The logical expression for the two outputs sum and carry are given below. A B and Cin are the input variables for two-bit binary numbers and carry input and S and Cout are the output variables for Sum and Carry.

                                            S = A ⊕ B ⊕ Cin
            Cout = A.B + B.C + C.A       (or)      Cout = A & B | (A^B) & Cin


Truth Table for Full Adder:

ABCinSUM (S)CARRY (Cout)
00000
00110
01010
01101
10010
10101
11001
1111
1

There are many  different ways we can proceed with Verilog coding for full adder: here we three ways in behavioural style

  1. Using an always statement
  2. Case statements
  3. If-else statements

Verilog code for full adder – Using always statement

Procedural statements inside this always block gets executed once there’s any change in event A, B OR Cin. Then comes the logical expression which will be assigned to the output registers S and Cout. Remember that the left-hand side entities must always be a reg (register) since registers are data storing elements.

So the final code is:

`timescale 1ns / 1ps module 
full_adder( A, B, Cin, S, Cout);

 input wire A, B, Cin;
 output reg S, Cout;

 always @(A or B or Cin)
  begin 
   S = A ^ B ^ Cin; 
   Cout = A&B | (A^B) & Cin; 
  end
endmodule

Verilog code for full adder – Using case statement

The case statement in Verilog is much similar to switch- case statement in C language.

`timescale 1ns / 1ps module 
full_adder(input wire A, B, Cin, output reg S, output reg Cout);

 always @(A or B or Cin)
  begin 

   case (A | B | Cin) 
     3'b000: begin S = 0; Cout = 0; end 
     3'b001: begin S = 1; Cout = 0; end 
     3'b010: begin S = 1; Cout = 0; end 
     3'b011: begin S = 0; Cout = 1; end 
     3'b100: begin S = 1; Cout = 0; end 
     3'b101: begin S = 0; Cout = 1; end 
     3'b110: begin S = 0; Cout = 1; end 
     3'b111: begin S = 1; Cout = 1; end 
   endcase 

  end
 
endmodule

Verilog code for full adder – Using if-else statement

`timescale 1ns / 1ps
module full_adder( A, B, Cin, S, Cout);

input wire A, B, Cin;
output reg S, Cout;

always @(A or B or Cin)
begin
 if(A==0 && B==0 && Cin==0)
  begin
   S=0;
   Cout=0;
  end

 else if(A==0 && B==0 && Cin==1)
  begin
   S=1;
   Cout=0;
  end

 else if(A==0 && B==1 && Cin==0)
  begin
   S=1;
   Cout=0;
  end

 else if(A==0 && B==1 && Cin==1)
  begin
   S=0;
   Cout=1;
  end

 else if(A==1 && B==0 && Cin==0)
  begin
   S=1;
   Cout=0;
  end

 else if(A==1 && B==0 && Cin==1)
  begin
   S=0;
   Cout=1;
  end

 else if(A==1 && B==1 && Cin==0)
  begin
   S=0;
   Cout=1;
  end

 else if(A==1 && B==1 && Cin==1)
  begin
   S=1;
   Cout=1;
  end
end

endmodule

Testbench for full adder in Verilog


//timescale directive
`timescale 1ns / 1ps
module top;

  //declare testbench variables
  reg  A_input, B_input, C_input;
  wire Sum, C_output;  

 //instantiate the design module and connect to the testbench variables
  full_adder instantiation(.A(A_input), .B(B_input), .Cin(C_input), .S(Sum), .Cout(C_output));

  initial
    begin
      $dumpfile("xyz.vcd");
      $dumpvars;

      //set stimulus to test the code
      A_input=0;
      B_input=0;
      C_input=0;
       #100 $finish;
    end

//provide the toggling input (just like truth table input)
//this acts as the clock input
always #40 A_input=~A_input;
always #20 B_input=~B_input;
always #10 C_input=~C_input;

//display output if there’s a change in the input event
  always @(A_input or B_input or C_input)
      $monitor("At TIME(in ns)=%t, A=%d B=%d C=%d Sum = %d Carry = %d", $time, A_input, B_input, C_input, Sum, C_output);

endmodule
Explanation:

For writing the testbench:

  • We’ll first add the timescale directive. It starts with a grave accent ` and does not end with a semicolon. Timescale directive is used for specifying the unit of time used in further modules and the time resolution (here one picosecond). The time resolution is the precision factor that determines the degree of accuracy of the time unit in the modules.
`timescale 1ns / 1ps

Next is the module and variable declaration.

  • The register (reg) type holds the value until a next value is being driven by the clock pulse onto it and is always under initial or always block. It is used to apply a stimulus to the input. Hence A_input B_input and C_input are declared as registers.
  • Wires(wire) are declared for the variables which are passive in nature. Their values don’t change, and they can’t be assigned inside always and initial block. Hence sum Sum and carry C_Output variables are declared as wires.
module top;
 reg  A_input, B_input, C_input;
 wire Sum, C_output;

Then comes the module instantiation.

  • The test bench applies stimulus to the Device Under Test DUT. To do this, the DUT must be instantiated under the testbench. The syntax for instantiation is given below. Port mapping is the linking of testbench’s modules with that of the design modules.
name_of_module name_of_instance(port_map)
  • Now we’ll give an initial stimulus to the input variables. This is done under the initial block.
  • We can also stop the simulation in a pre-mentioned delay time using $finish.
 initial  
  begin
   A_input=0;  
   B_input=0;   
   C_input=0;    
   #100 $finish;  
  end

The additional thing over here is the use of two system tasks:

  • $dumpfile is used to dump the changes in the values of net and registers in a VCD file (value change dump file).
  • $dumpvars is used to specify which variables should be dumped in the file name specified by argument in the filename.
initial  
  begin
   A_input=0;   
   B_input=0;   
   C_input=0;   
     #100 $finish;   
  end
  • Now, it depends on the user whether he wants to display the simulation result on the TCL console or not. I have used $monitor which displays the value of the signal whenever its value changes.
  • It is executed inside always block, and the sensitivity list remains the same as explained in the above section.
  • The format specifier %t gives us the current simulation time and %d is used to display the value of the variable in decimal.
always @(A_input or B_input or C_input)   
   $monitor("At TIME(in ns)=%t, A=%d B=%d C=%d Sum = %d Carry = %d", $time, A_input, B_input, C_input, Sum, C_output);




No comments:

Post a Comment

COMPARISON TREE

  Difference between Full and Complete Binary Tree A   binary tree  is a type of data structure where each node can only have  two offspring...